76 research outputs found

    Attenuation of Mammary Gland Dysplasia and Feeding Difficulties in Tabby Mice by Fetal Therapy.

    Get PDF
    Hypohidrotic ectodermal dysplasias (HED) are hereditary differentiation disorders of multiple ectodermal structures including the mammary gland. The X-linked form of HED (XLHED) is caused by a lack of the secreted signaling molecule ectodysplasin A1 (EDA1) which is encoded by the gene EDA and belongs to the tumor necrosis factor (TNF) superfamily. Although male patients (hemizygous) are usually more severely affected by XLHED, heterozygous female carriers of an EDA mutation may also suffer from a variety of symptoms, in particular from abnormal development of their breasts. In Tabby mice, a well-studied animal model of XLHED, EDA1 is absent. We investigated the effects of prenatal administration of Fc-EDA, a recombinant EDA1 replacement protein, on mammary gland development in female Tabby mice. Intra-amniotic delivery of Fc-EDA to fetal animals resulted later in improved breastfeeding and thus promoted the growth of their offspring. In detail, such treatment led to a normalization of the nipple shape (protrusion, tapering) that facilitated sucking. Mammary glands of treated female Tabby mice also showed internal changes, including enhanced branching morphogenesis and ductal elongation. Our findings indicate that EDA receptor stimulation during development has a stable impact on later stages of mammary gland differentiation, including lactation, but also show that intra-amniotic administration of an EDA1 replacement protein to fetal Tabby mice partially corrects the mammary gland phenotype in female adult animals

    The EDA deficient mouse has Zymbal’s gland hypoplasia and acute otitis externa

    Get PDF
    In mice, rats, dogs and humans, the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR and the intracellular signal transducer EDARADD leads to hypohidrotic ectodermal dysplasia, characterised by impaired development of teeth and hair, as well as cutaneous glands. The rodent ear canal has a large auditory sebaceous gland, the Zymbal's gland, the function of which in the health of the ear canal has not been determined. We report that EDA-deficient mice, EDAR-deficient mice and EDARADD-deficient rats have Zymbal's gland hypoplasia. EdaTa mice have 25% prevalence of otitis externa at postnatal day 21 and treatment with agonist anti-EDAR antibodies rescues Zymbal's glands. The aetiopathogenesis of otitis externa involves infection with Gram-positive cocci, and dosing pregnant and lactating EdaTa females and pups with enrofloxacin reduces the prevalence of otitis externa. We infer that the deficit of sebum is the principal factor in predisposition to bacterial infection, and the EdaTa mouse is a potentially useful microbial challenge model for human acute otitis externa

    No interactions between heparin and atacicept, an antagonist of B cell survival cytokines.

    Get PDF
    The TNF family ligands, B cell activating factor of the TNF family (BAFF, also known as B lymphocyte stimulator, BLyS) and a proliferation-inducing ligand (APRIL), share the transmembrane activator and calcium-modulator and cyclophilin ligand (CAML)-interactor (TACI) as one of their common receptors. Atacicept, a chimeric recombinant TACI/IgG1-Fc fusion protein, inhibits both ligands. TACI and APRIL also bind to proteoglycans and to heparin that is structurally related to proteoglycans. It is unknown whether the portion of TACI contained in atacicept can bind directly to proteoglycans, or indirectly via APRIL, and whether this could interfere with the anti-coagulant properties of heparin. Binding of atacicept and APRIL to proteoglycan-positive cells was measured by FACS. Activities of heparin and atacicept were measured with activated factor Xa inhibition and cell-based assays. Effects of heparin on circulating atacicept was monitored in mice. Atacicept did not bind to proteoglycan-positive cells, but when complexed to APRIL could do so indirectly via APRIL. Multimers of atacicept obtained after exposure to cysteine or BAFF 60-mer bound directly to proteoglycans. Atacicept alone, or in complex with APRIL, or in a multimeric form did not interfere with heparin activity in vitro. Conversely, heparin did not influence inhibition of BAFF and APRIL by atacicept and did not change circulating levels of atacicept. Lack of detectable interference of APRIL-bound or free atacicept on heparin activity makes it unlikely that atacicept at therapeutic doses will interfere with the function of heparin in vivo

    Antibodies That Block or Activate Mouse B Cell Activating Factor of the Tumor Necrosis Factor (TNF) Family (BAFF), Respectively, Induce B Cell Depletion or B Cell Hyperplasia.

    Get PDF
    B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice

    Stoichiometry of Heteromeric BAFF and APRIL Cytokines Dictates Their Receptor Binding and Signaling Properties.

    Get PDF
    The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity

    Oestrogen receptor α AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium.

    Get PDF
    Oestrogen receptor α (ERα) is a transcription factor with ligand-independent and ligand-dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expression of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity

    Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands

    Get PDF
    INTRODUCTION: Stem cells of somatic tissues are hypothesized to protect themselves from mutation and cancer risk through a process of selective segregation of their template DNA strands during asymmetric division. Mouse mammary epithelium contains label-retaining epithelial cells that divide asymmetrically and retain their template DNA. METHOD: Immunohistochemistry was used in murine mammary glands that had been labeled with [(3)H]thymidine during allometric growth to investigate the co-expression of DNA label retention and estrogen receptor (ER)-α or progesterone receptor (PR). Using the same methods, we investigated the co-localization of [(3)H]thymidine and ER-α or PR in mammary tissue from mice that had received treatment with estrogen, progesterone, and prolactin subsequent to a long chase period to identify label-retaining cells. RESULTS: Label-retaining epithelial cells (LRECs) comprised approximately 2.0% of the entire mammary epithelium. ER-α-positive and PR-positive cells represented about 30–40% of the LREC subpopulation. Administration of estrogen, progesterone, and prolactin altered the percentage of LRECs expressing ER-α. CONCLUSION: The results presented here support the premise that there is a subpopulation of LRECs in the murine mammary gland that is positive for ER-α and/or PR. This suggests that certain mammary LRECs (potentially stem cells) remain stably positive for these receptors, raising the possibility that LRECs comprise a hierarchy of asymmetrically cycling mammary stem/progenitor cells that are distinguished by the presence or absence of nuclear steroid receptor expression

    Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage

    Get PDF
    Estrogen-mediated proliferation is fundamental to normal mammary gland development. Recent studies have demonstrated that amphiregulin is a critical paracrine regulator of estrogen action during ductal morphogenesis. These studies implicate a critical role for amphiregulin in mammary stem cell differentiation as well as breast cancer initiation and progression

    Stop! In the name of transforming growth factor-β: keeping estrogen receptor-α-positive mammary epithelial cells from proliferating

    Get PDF
    Recent genetic and cell biological studies illustrate the importance of active transforming growth factor-β signaling in preventing the proliferation of estrogen receptor-positive cells in the normal mammary gland, and suggest how the loss of this inhibition may be important in early breast cancer progression
    corecore